Given:
The two points on the graph are R(-2,-4) and S(-8,-6).
To find:
The length of RS.
Solution:
Distance formula: The distance between two points is
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/56st313bklvuad5kmg37orzosnah8k5ru7.png)
Using the distance formula, the distance between R(-2,-4) and S(-8,-6) is
![d=√((-8-(-2))^2+(-6-(-4))^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4u7w9hb297qg7rl60xjs3wcfws01okj4gw.png)
![d=√((-8+2)^2+(-6+4)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6xrn0exlidn6h1u536z9xx9dze5ae3xs5t.png)
![d=√((-6)^2+(-2)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/92hb68e5jpf3otsbzadkpaebxvunurveqz.png)
![d=√(36+4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qxo1bxz2gv6r6siuc5wtqgd5jmbiyfo742.png)
On further simplification, we get
![d=√(40)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e4bexle3g65zhwuzl9ctqj215aefzh16hg.png)
![d=6.32455532](https://img.qammunity.org/2022/formulas/mathematics/high-school/ildhyghrb9bs95tumx5foxottyz57b087v.png)
![d\approx 6.3](https://img.qammunity.org/2022/formulas/mathematics/high-school/6omztuwov350p15mqumm9eeeihp00dj39t.png)
Therefore, the length of AB is about 6.3 units. So, the correct option is C.