101k views
0 votes
(3x + 2)^2 * (2x) * (x + 5)^2 * (2x + 1)

a) 9x^4 + 24x^3 + 20x^2 + 4x
b) 9x^4 + 14x^3 + 2x^2
c) 6x^3 + 16x^2 + 10x + 2
d) 6x^3 + 16x^2 + 2x

User Andynu
by
7.7k points

1 Answer

1 vote

Final answer:

To simplify the expression (3x + 2)^2 * (2x) * (x + 5)^2 * (2x + 1), we can raise each expression inside the parentheses to the indicated power and then multiply the terms using the distributive property. The simplified expression is 9x^4 + 28x^3 + 49x^2 + 8x.

Step-by-step explanation:

To simplify the expression (3x + 2)^2 * (2x) * (x + 5)^2 * (2x + 1), we can raise each expression inside the parentheses to the power indicated:

(3x + 2)^2 = (3x + 2)(3x + 2) = 9x^2 + 12x + 4

(x + 5)^2 = (x + 5)(x + 5) = x^2 + 10x + 25

Now, we can simplify the entire expression:

(9x^2 + 12x + 4) * (2x) * (x^2 + 10x + 25) * (2x + 1)

Using the distributive property, we can multiply each term:

9x^2 * 2x = 18x^3

12x * 2x = 24x^2

4 * 2x = 8x

x^2 * 9x^2 = 9x^4

x^2 * 10x = 10x^3

x^2 * 25 = 25x^2

Combining like terms, we get:

18x^3 + 24x^2 + 8x + 9x^4 + 10x^3 + 25x^2

Simplifying further:

28x^3 + 49x^2 + 8x + 9x^4

Therefore, the correct option is a) 9x^4 + 28x^3 + 49x^2 + 8x.

User Roygvib
by
7.5k points