Final Answer:
The answer of the given equation that "If the mean of a frequency distribution is 7.5 and if xi = 120 + 3k, Zf = 30, then k is equal to" is b) 35.
Step-by-step explanation:
The mean
of a frequency distribution can be calculated using the formula:
![\[ \bar{x} = (\sum (x_i \cdot f_i))/(\sum f_i) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/29drkf61ndbdos84jyvlsvv8ofpvmmvtch.png)
Given that
and
, we have:
![\[ 7.5 = (\sum ((120 + 3k) \cdot 30))/(\sum 30) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/83ctl6g67w1a3ivyh0md2dhnmaqt1p15ke.png)
Solving for
, we get:
![\[ \sum ((120 + 3k) \cdot 30) = 7.5 * \sum 30 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w35ryrv6seeqd2t8aks3j6reqsvwco8p8j.png)
![\[ \sum ((120 + 3k) \cdot 30) = 7.5 * 30 * 30 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gmn81oqwoao6g6eb2ziyamkqovej6j8yh5.png)
![\[ \sum ((120 + 3k) \cdot 30) = 6750 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j8ke4fjnkoikf5bnagl1519wfpotdlzyd0.png)
Now, substitute
and solve for \(120 + 3k\):
![\[ 6750 = 30 * (120 + 3k) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c54oroa9b06smvlck9dulbypaza3hfd6mz.png)
![\[ 225 = 120 + 3k \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1e2u60ozbw5ipzvynsg02r3olf3luo4a41.png)
![\[ 3k = 105 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/usw02gm2hbcaokzstje85gbc3xhfac4pf8.png)
![\[ k = 35 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7lo5fg38mc1xvh8q09z1584zo771t353ev.png)
Therefore, the value of
is b)35.