57.0k views
2 votes
Use the function to answer the question:

f(x) = x² - 5x - 3
g(x) = x² + 6x - 1
What is h(x) if g(x) - f(x)?
Options:
A. h(x) = -x² + 11x + 2
B. h(x) = x² - 11x - 2
C. h(x) = -x² - 4
D. h(x) = 3x² + x - 4
E. h(x) = x² + x + 2

1 Answer

2 votes

Final answer:

To find h(x) if g(x) - f(x), we need to subtract the function f(x) from the function g(x) and simplify the expression. The resulting function is h(x) = 11x + 2.

Step-by-step explanation:

To find h(x) if g(x) - f(x), we need to subtract the function f(x) from the function g(x). Let's substitute the given functions into the expression:

g(x) - f(x) = (x² + 6x - 1) - (x² - 5x - 3)

Combining like terms, we get:

g(x) - f(x) = x² + 6x - 1 - x² + 5x + 3

Simplifying further, we have:

g(x) - f(x) = 11x + 2

Therefore, h(x) = 11x + 2.

User Gps
by
8.0k points