Answer:
There orthocenter is on the triangle and coordinates are ( -3 , 2 )
Explanation:
coordinates given : X(-3,2) , Y(5, 2) , Z( -3 , 6 )
XY, m = ( 2-2)/(5--3) = 0
equation = y - 2 = 0(x--3)
y = 2
......................................................
YZ, m = (6-2)/(-3-5) = 4/-8 = -1/2
equation = y -6 = 2( x + 3)
y = 2x+12
Using simultaneous equation:
x = -3
So y = 2
Therefore coordinates: ( -3, 2 )