Final answer:
When added to 0.6, both option A (0) and option D (a repeating decimal) will produce a rational number, as they can both be expressed as fractions with integer numerators and non-zero integer denominators.
Step-by-step explanation:
The question asks which number, when added to 0.6, produces a rational number. A rational number is a number that can be expressed as a fraction with integer numerators and non-zero integer denominators. Let's consider the options given:
A. 0 - Adding 0 to 0.6 will result in 0.6, which is already in decimal form and can be written as ⅓, making it a rational number.
B. √2 - This is an irrational number; adding it to 0.6 will result in an irrational number.
C. π (Pi) - Pi is an irrational number, so adding it to 0.6 will also result in an irrational number.
D. 0.5050050005... - This appears to be a repeating decimal, and repeating decimals are rational numbers. Adding this to 0.6 will result in another rational number.
Thus, options A and D will produce a rational number when added to 0.6.