51.6k views
4 votes
Which can be the first step in finding the equation of the line that passes through the points (5.-4) and (-1,8) in

slope-intercept form 8-(-4) 12 ?
A. Calculate -1-5-6-2.1-5 -6 1
B. Calculate 8-(-4) 122
C. Find that the point at which the line intersects with the line y - Ois (3, 0).
D. Find that the point at which the line intersects with the line X - Y is (2, 2).

1 Answer

0 votes

Final answer:

The first step is to calculate the slope using the formula (y2 - y1) / (x2 - x1) and the given coordinates of the points. Then, substitute the slope and one of the points into the slope-intercept form (y = mx + b) to find the y-intercept. Finally, write the equation of the line using the calculated slope and y-intercept.

Step-by-step explanation:

The first step in finding the equation of the line that passes through the points (5, -4) and (-1, 8) in slope-intercept form is to calculate the slope.

  1. Using the formula for slope: m = (y2 - y1) / (x2 - x1), plug in the coordinates of the points: m = (8 - (-4))/(-1 - 5) = 12/(-6) = -2.
  2. Next, choose one of the given points and substitute the coordinates, along with the calculated slope, into the slope-intercept form: y = mx + b.
  3. Picking (5, -4) and using the slope m = -2, we have: -4 = -2(5) + b.
  4. Solving for b, we get: b = -4 + 10 = 6.

Therefore, the equation of the line that passes through the points (5, -4) and (-1, 8) in slope-intercept form is y = -2x + 6.

User Vovahost
by
8.1k points