204k views
5 votes
Letf(x)=1/x-2and g(x)=4x-8/x.preform each of the following operations. A) (f+g)(x) B)(f/g)(x) c)(f•g)(x)

A) (f + g)(x):
(f + g)(x) = f(x) + g(x) = (1/(x - 2)) + (4x - 8)/x
B) (f / g)(x):
(f / g)(x) = f(x) / g(x) = (1/(x - 2)) / ((4x - 8)/x)
C) (f * g)(x):
(f * g)(x) = f(x) * g(x) = (1/(x - 2)) * ((4x - 8)/x)

User Fyr
by
8.2k points

1 Answer

3 votes

Final answer:

To find (f + g)(x), we add f(x) and g(x) together. To find (f / g)(x), we divide f(x) by g(x). To find (f * g)(x), we multiply f(x) and g(x) together.

Step-by-step explanation:

(f + g)(x): To find (f + g)(x), we add f(x) and g(x) together. So, (f + g)(x) = f(x) + g(x) = (1/(x - 2)) + (4x - 8)/x.

(f / g)(x): To find (f / g)(x), we divide f(x) by g(x). So, (f / g)(x) = f(x) / g(x) = (1/(x - 2)) / ((4x - 8)/x).

(f * g)(x): To find (f * g)(x), we multiply f(x) and g(x) together. So, (f * g)(x) = f(x) * g(x) = (1/(x - 2)) * ((4x - 8)/x).

User Navith
by
7.1k points