78.6k views
3 votes
Complete the product: 5x^3(7x-1)

a) 35x^4 - 5x^3
b) 35x^4 - x^3
c) 35x^4 - 7x^3
d) 5x^4 - x^3

User Atclaus
by
6.9k points

1 Answer

3 votes

Final answer:

To complete the product 5x^3(7x-1), distribute 5x^3 across the parentheses resulting in 35x^4 - 5x^3, which is option (a).

Step-by-step explanation:

The question asks us to complete the product of the expression 5x^3(7x-1). To do this, we need to distribute 5x^3 across the parentheses. This means we will multiply 5x^3 by each term inside the parentheses.

First, we multiply 5x^3 by 7x to get 35x^4. Next, we multiply 5x^3 by -1 to get -5x^3. Hence, the completed product is 35x^4 - 5x^3, which corresponds to option (a).

User Vitalii Korsakov
by
8.0k points