42.1k views
4 votes
What is the distance between points R(-1,1) and S(-8,9) on the coordinate plane?

a) 10.2
b) 10.8
c) 11.4
d) 12.0

1 Answer

4 votes

Final answer:

The distance between points R(-1,1) and S(-8,9) is calculated using the distance formula, yielding an approximate distance of 10.63 units, closest to 10.8 units.

Step-by-step explanation:

The distance between two points on the coordinate plane can be calculated using the distance formula: √((x2 - x1)^2 + (y2 - y1)^2). Let's find the distance between points R(-1,1) and S(-8,9).

  1. Subtract the x-coordinates: x2 - x1 = -8 - (-1) = -7.
  2. Subtract the y-coordinates: y2 - y1 = 9 - 1 = 8.
  3. Square each result: (-7)^2 = 49 and 8^2 = 64.
  4. Add the squares: 49 + 64 = 113.
  5. Find the square root of the sum: √113 ≈ 10.63.

So, the distance between points R and S is approximately 10.63 units on the coordinate plane, which is closest to 10.8 units.

User KanisXXX
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.