158k views
4 votes
Prove that : sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A​

User Dynamo
by
8.1k points

1 Answer

7 votes

Final answer:

To prove the given trigonometric expression, we can apply the identities and properties of sine, cosine, tangent, and cotangent. By simplifying and rearranging terms, we can show that the left-hand side is equal to the right-hand side of the expression, which is sec A + csc A.

Step-by-step explanation:

To prove the given expression, we can use the trigonometric identities and their properties:

Start with the left-hand side of the expression:

sin A (1 + tan A) + cos A (1 + cot A)

Using the identities tan A = sin A / cos A and cot A = cos A / sin A, we can simplify the expression:

sin A (1 + sin A / cos A) + cos A (1 + cos A / sin A)

Expanding and rearranging terms:

sin A + sin A² / cos A + cos A + cos A² / sin A

Combining like terms:

(sin A cos A + sin² A + cos² A + cos A sin A) / (cos A sin A)

Using the identity sin² A + cos² A = 1:

(2sin A cos A + 1) / (cos A sin A)

Applying the identity sin (A + B) = sin A cos B + cos A sin B:

(sin (A + A) + 1) / (cos A sin A)

Using the identity sin (2A) = 2sin A cos A:

(2sin A cos A + 1) / (cos A sin A)

Finally, using the reciprocal identities 1 / cos A = sec A and 1 / sin A = csc A:

(2sin A cos A + 1) / (cos A sin A) = sec A + csc A

User Ecle
by
9.4k points