85.1k views
0 votes
3x - y = 8 - x ,6x + 4y = 2y-9 For the system of equations above, what is the value of the product xy?

(A) -3
(B) -2
(C) 2
(D) 3

User Zallarak
by
7.5k points

1 Answer

4 votes

Final answer:

To find the value of the product xy in the given system of equations, solve for x and y and multiply their values together.

Step-by-step explanation:

To solve the given system of equations:

  1. Start by adding x to both sides of the first equation to isolate the x term: 3x + x - y = 8.
  2. Simplify the equation to 4x - y = 8.
  3. Next, multiply the second equation by 4 to eliminate the y term: 24x + 16y = 8y - 36.
  4. Simplify the equation to 24x - 8y = -36.
  5. Now, you have a system of two equations with two variables: 4x - y = 8 and 24x - 8y = -36.
  6. Multiply both sides of the first equation by 8 to get 32x - 8y = 64.
  7. Subtract the second equation from the modified first equation: 32x - 8y - (24x - 8y) = 64 - (-36).
  8. Simplify the equation to get 8x = 100.
  9. Divide both sides by 8 to solve for x: x = 12.5.
  10. Substitute the value of x back into one of the original equations to solve for y. Using the first equation, we have: 3(12.5) - y = 8.
  11. Simplify the equation to get 37.5 - y = 8.
  12. Subtract 37.5 from both sides to isolate the y term: -y = 8 - 37.5.
  13. Simplify the equation to -y = -29.5.
  14. Multiply both sides by -1 to solve for y: y = 29.5.

The values of x and y are x = 12.5 and y = 29.5, respectively. To find the value of the product xy, simply multiply the values of x and y together: xy = 12.5 * 29.5 = 368.75. Therefore, the value of the product xy is 368.75.

User UrmLmn
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.