Final answer:
The first two equations are false because their simplified sides do not equal each other, while the third equation is true as both sides simplify to the same value.
Step-by-step explanation:
To determine whether each equation is true or false, we need to perform some calculations.
62−28=60−30: Performing the subtraction on both sides of the equation gives us 34 on the left side and 30 on the right side. Since 34 does not equal 30, this equation is false.
3 - 8 = (2 × 8) - 8: On the left side, 3 - 8 equals -5. On the right side, (2 × 8) - 8 simplifies to 16 - 8, which equals 8. Because -5 does not equal 8, this equation is false.
16/-2 + 24/-2 = 40/-2: Dividing each number by -2 on the left side, we get -8 + -12, which sums to -20. On the right side, 40 divided by -2 is -20. Since both sides equal -20, this equation is true.