Final answer:
To solve the given system of equations, we can use the substitution method. The solution is x = 5/3 and y = 2.
Step-by-step explanation:
To solve the given system of equations through simultaneous linear and quadratic methods, we can use the substitution method.
Given:
xy + 3x = 3 ...(1)
3x + y = 7 ...(2)
Solving using Simultaneous Linear Equations:
To eliminate one variable, we can multiply equation (2) by -1 to obtain -3x - y = -7.
Adding this equation to equation (1), we get:
-2y = -4 => y = 2
Substituting the value of y into equation (2), we can solve for x:
3x + 2 = 7 => 3x = 5 => x = 5/3
Thus, the solution to the system of equations is x = 5/3 and y = 2.