Final answer:
To find the polar coordinates (r, θ) of a point given its Cartesian coordinates (x, y), we use the formulas r = √(x² + y²) and θ = tan⁻¹(y/x). Applying these formulas to the point (6, -6), we find that its polar coordinates are (√72, -π/4).
Step-by-step explanation:
To find the polar coordinates (r, θ) of a point given its Cartesian coordinates (x, y), we use the following formulas:
- r = √(x² + y²)
- θ = tan⁻¹(y/x)
Using the given Cartesian coordinates (6, -6), we can substitute these values into the formulas:
r = √(6² + (-6)²)
= √(36 + 36)
= √72
θ = tan⁻¹((-6)/6)
= tan⁻¹(-1)
= -π/4
So, the polar coordinates of the point (6, -6) are (r, θ) = (√72, -π/4).