The matrix transformation and the vertices of the image is
![\left[\begin{array}{ccc}3&4&7\\-2&1&2\end{array}\right] + \left[\begin{array}{ccc}-1&-1&-1\\2&2&2\end{array}\right] = \left[\begin{array}{ccc}2&3&6\\0&3&4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/58giynoyuit697m5d8iob3u9w5gjxtr8q8.png)
D'(2,0), E'(3,3) , and F'(6,4)
Identifying the matrix transformation and the vertices of the image.
From the question, we have the following parameters that can be used in our computation:
D(3,-2), E(4,1) , and F(7,2)
When represented as a matrix, we have
![\left[\begin{array}{ccc}3&4&7\\-2&1&2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gad1o73hhjtm2h5w7jkj8l96gpjfskz44v.png)
Also, we have the transformation to be
A translation 1 unit left and 2 units up.
This is represented as
![\left[\begin{array}{ccc}-1&-1&-1\\2&2&2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lxgqf5cf44gnder6daofolw3h84irxauuc.png)
So, we have the following equation
![\left[\begin{array}{ccc}3&4&7\\-2&1&2\end{array}\right] + \left[\begin{array}{ccc}-1&-1&-1\\2&2&2\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ydzj60wpmy72na3yk50kq2infqxxcq3zcj.png)
Evaluate the sum
![\left[\begin{array}{ccc}3&4&7\\-2&1&2\end{array}\right] + \left[\begin{array}{ccc}-1&-1&-1\\2&2&2\end{array}\right] = \left[\begin{array}{ccc}2&3&6\\0&3&4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/58giynoyuit697m5d8iob3u9w5gjxtr8q8.png)
Hence, the matrix transformation and the vertices of the image is
![\left[\begin{array}{ccc}3&4&7\\-2&1&2\end{array}\right] + \left[\begin{array}{ccc}-1&-1&-1\\2&2&2\end{array}\right] = \left[\begin{array}{ccc}2&3&6\\0&3&4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/58giynoyuit697m5d8iob3u9w5gjxtr8q8.png)
And, we have
D'(2,0), E'(3,3) , and F'(6,4)