To achieve allowable stress values, the required heights for aluminum and steel in a beam with a bending moment are approximately 57.74 mm and 35.95 mm, respectively, assuming a beam width of 100 mm.
(a) Maximum Stress in Steel

Using the formula:
![\[ \sigma_s = (E_s)/(E_a) \cdot \sigma_a \]\[ \sigma_s = (200 \ GPa)/(75 \ GPa) \cdot 50 \ MPa \]\[ \sigma_s \approx 133.33 \ MPa \]](https://img.qammunity.org/2024/formulas/engineering/college/dkehtnku4q7c331xc1tpnhgwxksdh10xxl.png)
(b) Heights Required for Allowable Stresses
- Allowable stress in aluminum

- Allowable stress in steel

- Beam height

1. Aluminum:
![\[ 40 \ MPa = \frac{M \cdot \frac{h_{\text{al}}}{2}}{(1)/(12)b \cdot h_{\text{al}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/ij3zyyfwz2jqpevc722zqvlh6qlbnvno0r.png)
2. Steel:
![\[ 94 \ MPa = \frac{M \cdot \frac{h_{\text{st}}}{2}}{(1)/(12)b \cdot h_{\text{st}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/4dwk31zk19mn7kz0leoskxr4g9zm5udgda.png)
Numerical Calculations:
Let's use these equations for numerical calculations. Assuming b = 100 mm (width of the beam) and M = 1000
(bending moment):
1. Aluminum:
![\[ 40 \ MPa = \frac{1000 \cdot \frac{h_{\text{al}}}{2}}{(1)/(12) \cdot 100 \cdot h_{\text{al}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/aqiakptco5h9eaaww5gnwuza9ye1zxel1s.png)
2. Steel:
![\[ 94 \ MPa = \frac{1000 \cdot \frac{h_{\text{st}}}{2}}{(1)/(12) \cdot 100 \cdot h_{\text{st}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/5ez7bmmx05y6lyb3dwjifx2lpmu2omn2vo.png)
Let me perform these calculations.
Numerical Calculations:
Given values:
- Beam width

- Bending moment

1. Aluminum:
![\[ 40 \ MPa = \frac{1000 \cdot \frac{h_{\text{al}}}{2}}{(1)/(12) \cdot 100 \cdot h_{\text{al}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/aqiakptco5h9eaaww5gnwuza9ye1zxel1s.png)
Solving for
:
![\[ h_{\text{al}}^3 = \frac{1000 \cdot \frac{h_{\text{al}}}{2}}{40 \ MPa \cdot (1)/(12) \cdot 100} \]\[ h_{\text{al}} \approx 57.74 \ mm \]](https://img.qammunity.org/2024/formulas/engineering/college/9im1zmhsf3y19fqwznlgic9zsqvpgd7mpo.png)
2. Steel:
![\[ 94 \ MPa = \frac{1000 \cdot \frac{h_{\text{st}}}{2}}{(1)/(12) \cdot 100 \cdot h_{\text{st}}^3} \]](https://img.qammunity.org/2024/formulas/engineering/college/5ez7bmmx05y6lyb3dwjifx2lpmu2omn2vo.png)
Solving for
:
![\[ h_{\text{st}}^3 = \frac{1000 \cdot \frac{h_{\text{st}}}{2}}{94 \ MPa \cdot (1)/(12) \cdot 100} \]](https://img.qammunity.org/2024/formulas/engineering/college/b1xbqasplcaq5n08pkuuju0pfcoslb8gen.png)
![\[ h_{\text{st}} \approx 35.95 \ mm \]](https://img.qammunity.org/2024/formulas/engineering/college/rcj3y8tq0e18ntmn5ay7a1vk1c50z3jbq9.png)
The required heights for aluminum and steel to reach their allowable stress values under the maximum moment are approximately
and
, respectively.