229k views
5 votes
The mean and standard deviation of a random sample of n measurements are equal to 33.5 and 3.2 , respectively. a. Find a 99% confidence interval for μ if n=49. b. Find a 99% confidence interval for μ if n=196. c. Find the widths of the confidence intervals found in parts a and b. What is the effect on the width of a confidence interval of quadrupling the sample size while holding the confidence coefficient fixed?

1 Answer

5 votes

Final answer:

a. For n=49: CI = 33.5 ± 1.262 (99% confidence interval: 32.238, 34.762). b. For n=196: CI = 33.5 ± 0.679 (99% confidence interval: 32.821, 34.179). c. The width of the confidence interval is reduced by half when quadrupling the sample size while holding the confidence coefficient fixed.

Step-by-step explanation:

To find the confidence interval for μ, we can use the formula: CI = x ± (z * σ/√n), where x is the sample mean, z is the z-score corresponding to the desired confidence level, σ is the population standard deviation, and n is the sample size.

a. For n=49, the z-score for a 99% confidence level is approximately 2.576. Using the given values of x=33.5, σ=3.2, and n=49, we can calculate the confidence interval:

CI = 33.5 ± (2.576 * 3.2/√49) = 33.5 ± 1.262.

Therefore, the 99% confidence interval for μ when n=49 is (32.238, 34.762).

b. For n=196, the z-score for a 99% confidence level is still approximately 2.576. Using the given values of x=33.5, σ=3.2, and n=196, we can calculate the confidence interval:

CI = 33.5 ± (2.576 * 3.2/√196) = 33.5 ± 0.679.

Therefore, the 99% confidence interval for μ when n=196 is (32.821, 34.179).

c. The width of a confidence interval is determined by the formula: Width = 2 * (z * σ/√n). When quadrupling the sample size while holding the confidence coefficient fixed, the z-score and σ remain the same, but the √n term becomes double. Therefore, the width of the confidence interval is reduced by half.

User Tjt
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories