148k views
3 votes
Let A and B be events with P(A) = 0.36 , P(B) = 0.35 , and P(B | A) = 0.51 . Find P(A and B).

User IBobb
by
7.3k points

1 Answer

2 votes

Final answer:

To find the probability of events A and B occurring together, we can use the formula P(A and B) = P(B | A) ⋅ P(A). Given the values, P(A) = 0.36, P(B) = 0.35, and P(B | A) = 0.51, we can calculate that P(A and B) = 0.1836.

Step-by-step explanation:

To find P(A and B), we can use the formula: P(A and B) = P(B | A) ⋅ P(A). Given that P(A) = 0.36, P(B) = 0.35, and P(B | A) = 0.51, we can substitute these values into the formula to calculate P(A and B).

P(A and B) = 0.51 ⋅ 0.36 = 0.1836.

Therefore, the probability of events A and B occurring together is 0.1836.

User Pravprab
by
7.3k points