Final answer:
Parker's z-score of -0.03 indicates that his score is 0.03 standard deviations below the class average for the history test.
Step-by-step explanation:
If Parker has a standardized score (z-score) of -0.03, this means that Parker's score is 0.03 standard deviations below the class average on the history test. A z-score is a statistical measure that describes a score's relationship to the mean of a group of scores in terms of standard deviations. Since the z-score is negative, Parker scored just slightly below the class mean; positive z-scores indicate a score above the mean. The standard normal distribution, denoted as Z~ N(0, 1), has a mean of 0 and standard deviation of 1, and is used for comparing different data sets by standardizing scores.