The answer in terms of y and x is
.
Step 1: Find a common denominator
The common denominator is
:
![\[((y + 3)(2x^2 + 4))/((2x^2 - 2x)(2x^2 + 4)) < (-1(2x^2 - 2x))/((2x^2 - 2x)(2x^2 + 4))\]](https://img.qammunity.org/2024/formulas/mathematics/college/v4q8pwd8t7aljbdla255uew9r9wxbcrcjc.png)
Step 2: Distribute and simplify
Expand both the numerator and denominator:
![\[(y + 3)(2x^2 + 4) < -1(2x^2 - 2x)\]](https://img.qammunity.org/2024/formulas/mathematics/college/ikoh3b068lvyv323vfx7u8navyolfibc1n.png)
Step 3: Isolate y
Distribute and combine like terms:
![\[2x^2y + 4y + 6x^2 + 12 < -2x^2 + 2x\]](https://img.qammunity.org/2024/formulas/mathematics/college/d7b1igx7xc4ub6ln7obfxuhiqtz9lflqye.png)
Subtract
from both sides:
![\[2x^2y + 4y + 6x^2 + 12 + 2x^2 - 2x < 0\]](https://img.qammunity.org/2024/formulas/mathematics/college/lep67vdznpv5xt75bvpwy0zj83vuhxzttl.png)
Combine like terms:
![\[2x^2y + 6x^2 + 4y - 2x + 12 < 0\]](https://img.qammunity.org/2024/formulas/mathematics/college/6bzvlusbxy7u8rzxtyo4dpcbqdlv5sj69m.png)
Step 4: Express the solution for y in terms of x
Factor out
from the terms with
and factor out 2 from the terms with y:
![\[2x^2(y + 3) + 2(2x^2 - x + 6) < 0\]](https://img.qammunity.org/2024/formulas/mathematics/college/sx1np6cvz966ajyb17oyeitar4hwmf92vt.png)
Divide both sides by 2 to simplify:
![\[x^2(y + 3) + 2x^2 - x + 6 < 0\]](https://img.qammunity.org/2024/formulas/mathematics/college/t7twuvs16wvipqnhy70btbys0q0prr2o70.png)
Now, you have the solution expressed for y in terms of x:
![\[y + 3 < -(2x^2 - x + 6)/(x^2)\]](https://img.qammunity.org/2024/formulas/mathematics/college/a8vzhoy3rbgf9u5lzilfda68m73b77dq6o.png)
So, the answer in terms of y and x is
.
The probable question can be:
Question:
Solve the inequality
. Which of the following expressions represents the solution for \(y\) in terms of \(x\)?
a.

b.

c.

d.
