The standard quantity of plastic allowed for 3,400 helmets is 1,700 kg, with a standard cost of $13,600. The materials spending variance is $1,646 unfavorable, comprising a $14,236 unfavorable price variance and a $2,448 favorable quantity variance.
Let's calculate the standard quantity (SQ) of kilograms of plastic allowed to make 3,400 helmets:
![\[ SQ = \text{Number of Helmets} * \text{Standard Quantity per Helmet} \]\\ SQ = 3,400 \, \text{Helmets} * 0.50 \, \text{kg per Helmet} = 1,700 \, \text{kg} \]](https://img.qammunity.org/2024/formulas/business/college/c8wiex2b10vv0ksv9altkvkqo03tj02ps6.png)
Now, calculate the standard materials cost allowed (SQ × SP) to make 3,400 helmets:
![\[ \text{Standard Materials Cost Allowed} = SQ * \text{Standard Price per Kilogram} \]\text{Standard Materials Cost Allowed} = 1,700 \, \text{kg} * $8.00/\text{kg} = $13,600 \]]()
The materials spending variance is the difference between the actual cost and the standard cost allowed:
![\[ \text{Materials Spending Variance} = \text{Actual Cost} - \text{Standard Materials Cost Allowed} \] \text{Materials Spending Variance} = $15,246 - $13,600 = $1,646 \, \text{Unfavorable} \]]()
Now, let's break down the variance into price and quantity variances:
![\[ \text{Materials Price Variance} = (\text{Actual Price} - \text{Standard Price}) * \text{Actual Quantity} \]\\\ \text{Materials Price Variance} = ($15,246 - $8.00/\text{kg}) * 2,006 \, \text{kg} = $14,236 \, \text{Unfavorable} \text{Materials Quantity Variance} = (\text{Actual Quantity} - \text{SQ}) * \text{Standard Price} \]\\\text{Materials Quantity Variance} = (2,006 \, \text{kg} - 1,700 \, \text{kg}) * $8.00/\text{kg} = $2,448 \, \text{Favorable} \]](https://img.qammunity.org/2024/formulas/business/college/wwpssb3fpap89h6tjt3s3uokjbdlxs94pj.png)
In summary:
- Standard Quantity (SQ) = 1,700 kg
- Standard Materials Cost Allowed = $13,600
- Materials Spending Variance = $1,646 Unfavorable
- Materials Price Variance = $14,236 Unfavorable
- Materials Quantity Variance = $2,448 Favorable