Final answer:
To simplify an expression to an irrational answer, you need to identify expressions with square roots that cannot be simplified to rational numbers. Three correct options are: a. 9√16 - √9, b. 42× - √2√4, and d. 7√5.
Step-by-step explanation:
The expressions that simplify to an irrational answer are:
a. 9√16 - √9
b. 42× - √2√4
c. 3√2√7
d. 7√5
Example: Let's simplify expression a. 9√16 - √9:
- √16 simplifies to -4 because the square root of 16 is 4, and since we have a negative sign in front, it becomes -4.
- √9 simplifies to -3 because the square root of 9 is 3.
So, the expression becomes 9(-4) - (-3) = -36 + 3 = -33
Therefore, the correct expressions that simplify to an irrational answer are a. 9√16 - √9, b. 42× - √2√4, and d. 7√5.