11.7k views
5 votes
Which expression in factored form is equivalent to this expression? 4(x² - 2x) - 2(x² - 3)

a. 2(x - 1)(2x + 3)
b. 2(x + 1)(2x - 3)
c. 4(x - 1)(x + 3)
d. 4(x + 1)(x - 3)

1 Answer

4 votes

Final answer:

The expression in factored form that is equivalent to 4(x² - 2x) - 2(x² - 3) is 2(x - 1)(2x + 3) - 2x² + 6.

Step-by-step explanation:

To factor the expression 4(x² - 2x) - 2(x² - 3), we can start by factoring out the common factors from each term. Factoring out 4 and x from the first term, and -2 from the second term, we get:

4(x² - 2x) - 2(x² - 3) = 4x(x - 2) - 2(x² - 3)

Next, we can further simplify the expression:

4x(x - 2) - 2(x² - 3) = 4x(x - 2) - 2x² + 6

Finally, we can factor out a common factor from the last two terms:

4x(x - 2) - 2x² + 6 = 2(x - 1)(2x + 3) - 2x² + 6 = 2(x - 1)(2x + 3) - 2x² + 6 = 2(x - 1)(2x + 3) - 2x² + 6

User Marine
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories