Final answer:
To simplify (sin 3x)²(cos 3x)², apply the half-angle formulas cos² θ = ½ (1 + cos 2θ) and sin² θ = ½ (1 - cos 2θ). Substituting these, the expression becomes ¼ (1 - cos² 6x), which simplifies to ¼ sin² 6x using the Pythagorean identity.
Step-by-step explanation:
To simplify the expression (sin 3x)²(cos 3x)² using half-angle formulas, we can make use of trigonometric identities. First, recall that the double angle formula for cosine is cos 2θ = cos² θ - sin² θ. We can rewrite this as cos 2θ = 2 cos² θ - 1 = 1 - 2 sin² θ. Solving for cos² θ and sin² θ, we get cos² θ = ½ (1 + cos 2θ) and sin² θ = ½ (1 - cos 2θ).
Using these identities, we can express (sin 3x)² and (cos 3x)² in terms of a double angle:
- (sin 3x)² = ½ (1 - cos 6x)
- (cos 3x)² = ½ (1 + cos 6x)
Substituting these into the original expression, we get:
(½ (1 - cos 6x)) (½ (1 + cos 6x)) = ¼ (1 - cos² 6x)
Finally, applying the Pythagorean identity sin² θ + cos² θ = 1, we can simplify further:
¼ (1 - (1 - sin² 6x)) = ¼ sin² 6x
Thus, the simplified expression in terms of sine and cosine functions is ¼ sin² 6x.