110k views
4 votes
Consider a line segment with endpoints (4, 7) and (1, 11) Which line segment is equal in distance to the given line segment?

A. line segment with endpoints (−6, 4) and (2, −5).
B. line segment with endpoints (1, −4) and (9, 2).
C. line segment with endpoints (−3, 1) and (4, 5).
D.A line segment with endpoints (5, 3) and (1, 6).

User Dhanraj
by
8.6k points

1 Answer

1 vote

well, first off, let's see how long the segment from (4 , 7) to (1 , 11) is


~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{4}~,~\stackrel{y_1}{7})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{11})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ d=√((~~1 - 4~~)^2 + (~~11 - 7~~)^2)\implies d=√( (-3)^2 + (4)^2) \\\\\\ d=√( 9 + 16)\implies d=√( 25 )\implies d=5

now let's check the other points


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-5}) ~\hfill d=√((~~ 2- (-6)~~)^2 + (~~ -5- 4~~)^2) \\\\\\ ~\hfill d=√(( 8 )^2 + ( -9)^2) \implies d=√( 145) \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{1}~,~\stackrel{y_1}{-4})\qquad (\stackrel{x_2}{9}~,~\stackrel{y_2}{2}) ~\hfill d=√((~~ 9- 1~~)^2 + (~~ 2- (-4)~~)^2) \\\\\\ ~\hfill d=√(( 8)^2 + ( 6)^2) \implies d=√( 100)\implies d=10 \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{5}) ~\hfill d=√((~~ 4- (-3)~~)^2 + (~~ 5- 1~~)^2) \\\\\\ ~\hfill d=√(( 7 )^2 + ( 4)^2) \implies d=√( 65) \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{5}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{6}) ~\hfill d=√((~~ 1- 5~~)^2 + (~~ 6- 3~~)^2) \\\\\\ ~\hfill d=√(( -4)^2 + ( 3)^2) \implies d=√( 25)\implies d=5\textit{\LARGE \checkmark}

User Kellermat
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories