265,956 views
32 votes
32 votes
\frac{2x^3t^3}{xt^2}\:\cdot \frac{\left(3xt\right)^3}{9x^2t}

User Sahith Vibudhi
by
3.0k points

1 Answer

18 votes
18 votes

Answer:


6x^(3)t^(3)

Explanation:

Given expression:


(2x^3t^3)/(xt^2)\:\cdot (\left(3xt\right)^3)/(9x^2t)


\textsf{Apply exponent rule} \quad (ab)^c=a^c \cdot b^c:


\implies (2x^3t^3)/(xt^2)\:\cdot (3^3x^3t^3)/(9x^2t)


\implies (2x^3t^3)/(xt^2)\:\cdot (27x^3t^3)/(9x^2t)


\textsf{Apply the fraction rule} \quad (a)/(b) \cdot (c)/(d)=(ac)/(bd):


\implies (2x^3t^327x^3t^3)/(xt^29x^2t)

Collect like terms:


\implies (2 \cdot 27x^3x^3t^3t^3)/(9x^2xt^2t)

Multiply the numbers 2 and 27:


\implies (54x^3x^3t^3t^3)/(9x^2xt^2t)


\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^(b+c):


\implies (54x^(3+3)t^(3+3))/(9x^(2+1)t^(2+1))


\implies (54x^6t^6)/(9x^3t^3)

Separate like terms:


\implies (54)/(9) \cdot (x^6)/(x^3)\cdot (t^6)/(t^3)

Divide the numbers 54 and 9:


\implies 6 \cdot (x^6)/(x^3)\cdot (t^6)/(t^3)


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies 6 \cdot x^(6-3)\cdot t^(6-3)


\implies 6 \cdot x^(3)\cdot t^(3)


\implies 6x^(3)t^(3)

User Takashi Oguma
by
3.1k points