The 90% confidence interval for the true mean difference is approximately
.
To construct a 90% confidence interval for the true mean difference between the pretest and posttest scores, you can use the following formula:
![\[ \bar{d} \pm t \left((s_d)/(√(n))\right) \]](https://img.qammunity.org/2024/formulas/mathematics/college/x7tar0xrtf63pjy0i1bzv50i63a6l21e5r.png)
1. **Calculate the sample mean difference
:**
![\[ \bar{d} = \frac{\sum{(X_{\text{posttest}} - X_{\text{pretest}})}}{n} \]\\ \bar{d} = (56 - 54 + 53 - 53 + \ldots + 61 - 54)/(10) \]\\ \bar{d} = (64)/(10) \]\\ \bar{d} = 6.4 \]](https://img.qammunity.org/2024/formulas/mathematics/college/15w45xo25gd4ba3zctkg64znmkbgmrur20.png)
2. **Calculate the sample standard deviation of the differences (\( s_d \)):**
![s_d = \sqrt{\frac{\sum{(X_{\text{posttest}} - X_{\text{pretest}} - \bar{d})^2}}{n-1}} \]\\ s_d = \sqrt{((56 - 54 - 6.4)^2 + (53 - 53 - 6.4)^2 + \ldots + (61 - 54 - 6.4)^2)/(9)} \]\\ s_d = \sqrt{(141.6)/(9)} \]\\s_d = √(15.7333) \]\\s_d \approx 3.967 \]](https://img.qammunity.org/2024/formulas/mathematics/college/ur6w65rflhp55mfubi0mmfcuazuj4gzcdg.png)
3. **Determine the t-value for a 90% confidence interval with 9 degrees of freedom (sample size - 1). You can use a t-table or a statistical software for this. Let's assume the t-value is approximately 1.833 (for a two-tailed test).**
4. **Plug the values into the formula:**
![\text{Margin of Error} = t \left((s_d)/(√(n))\right) \]\\ \text{Margin of Error} = 1.833 \left((3.967)/(√(10))\right) \]\\ \text{Margin of Error} \approx 1.83 \]](https://img.qammunity.org/2024/formulas/mathematics/college/76i78mdw1vayz39fm3k9nnj3dq9kt6uxkw.png)
5. **Construct the Confidence Interval:**
![\[ \text{Confidence Interval} = \bar{d} \pm \text{Margin of Error} \]\\ \text{Confidence Interval} = 6.4 \pm 1.83 \](https://img.qammunity.org/2024/formulas/mathematics/college/7gr09rqumygktqu0aa18hjt23vxgesm29n.png)
Therefore, the 90% confidence interval for the true mean difference is approximately
. This means we are 90% confident that the true mean difference between pretest and posttest scores lies between these values, suggesting an increase in students' knowledge of the course material due to the teaching method