142k views
0 votes
Write an equation of the line that passes through (-2,-7) and is perpendicular to the line y = -x + 7

User Milson
by
9.0k points

1 Answer

4 votes

Final answer:

The equation of the line that passes through (-2, -7) and is perpendicular to y = -x + 7 is y = x - 5.

Step-by-step explanation:

To find the equation of a line that is perpendicular to y = -x + 7 and passes through (-2, -7), we first need to determine the slope of the given line. The equation y = -x + 7 is in the form y = mx + b, where m is the slope. In this case, the slope is -1.

The slope of a line perpendicular to this is the negative reciprocal of -1, which is 1.

Next, we'll use the slope and the point (-2, -7) to find the equation of the perpendicular line using the point-slope form. The formula is y - y1 = m(x - x1), where (x1, y1) is the given point and m is the slope.

Plugging in the values:

y - (-7) = 1(x - (-2))

y + 7 = x + 2

y = x - 5

Therefore, the equation of the line that passes through (-2, -7) and is perpendicular to y = -x + 7 is y = x - 5.

User Badjr
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories