Final Answer:
The expression \( r \cdot (18 - 3) \) is equivalent to option b) \( r \cdot 18 - 3 \). Option B is correct.
Step-by-step explanation:
The expression \( r \cdot (18 - 3) \) can be simplified using the distributive property of multiplication over addition and subtraction. The expression \( 18 - 3 \) simplifies to \( 15 \), so \( r \cdot (18 - 3) \) simplifies to \( r \cdot 15 \).
Among the given options:
- a) \( (r \cdot 18) - 3 \) simplifies to \( r \cdot 18 - 3 \)
- b) \( r \cdot 18 - 3 \) matches \( r \cdot (18 - 3) \)
- c) \( (r \cdot 18) - (r \cdot 3) \) simplifies to \( r \cdot 18 - r \cdot 3 \)
- d) \( (r \cdot 18) \cdot 3 \) simplifies to \( r \cdot 18 \cdot 3 \)
The expression \( r \cdot (18 - 3) \) is equivalent to option b) \( r \cdot 18 - 3 \).