For angles on the transversal line d:
m∠1 = m∠2 = m∠4 = m∠6 = 148°
m∠3 = m∠5 = 32°
For angles on the transversal line c:
m∠7 = m∠9 = m∠10 = 100°
m∠8 = m∠11 = m∠12 = 80°
When a transversal line intersects a pair of parallel lines, several angles are formed which includes: Corresponding angles, vertical angles, and alternate angles.
For angles on the transversal line d we have that;
8x - 8 = 3x + 17 {vertical angles are equal}
8x - 3x = 17 + 8
5x = 25
x = 5
8(5) - 8 = 32 so;
32 + m∠1 = 180° {straight line angles}
m∠1 = 180 - 32
m∠1 = 148°
m∠1 = m∠2 = 148° {vertical angles are equal}
m∠3 = m∠5 and m∠4 = m∠6 {corresponding}
m∠3 = 32°
m∠4 = m∠5 = 148°
For angles on the transversal line c we have that;
4y + 44 + 6y + 46 = 180° {alternate exterior angles}
10y + 90 = 180
10y = 180 - 90
10y = 90
y = 9
4(9) + 44 = 80° so;
m∠8 = 80° {vertical angles}
80 + m∠7 = 180
m∠7 = 180 - 80
m∠7 = 100°
m∠7 = m∠9 = m∠10 = 100° {corresponding angles}
m∠8 = m∠11 = m∠12 = 80° {corresponding angles}
Therefore, for angles on the transversal line d, m∠1 = m∠2 = m∠4 = m∠6 = 148° and m∠3 = m∠5 = 32°. For the angles on the transversal line c, m∠7 = m∠9 = m∠10 = 100° and m∠8 = m∠11 = m∠12 = 80°.