219k views
4 votes
Scientists released a weather balloon from a raised platform at 4:00 p.m. the weather balloon rose at a constant speed. at 4:05 pm, the weather balloon's altitude was 1,482 meters. at 4:09, the weather balloon had reached an altitude of 2,626 meters. how many meters did the weather balloon rise each minute complete the equation that describes the relationship between the altitude of the weather balloon in meters, a, and the elapsed time in minutes, t.

a) a = 144t - 318
b) a = 74t + 1408
c) a = 252t + 118
d) a = 88t - 82

1 Answer

1 vote

Final answer:

The weather balloon rises approximately 286 meters each minute. The equation that describes the relationship between altitude and time is a = 286t + constant. Option c) a = 252t + 118 is the closest equation that fits the criteria.

Step-by-step explanation:

To determine the rate at which the weather balloon rises per minute, we can calculate the altitude change per minute. From 4:05 pm to 4:09 pm, there is a difference of 2,626 meters - 1,482 meters = 1,144 meters in altitude in 4 minutes. Therefore, the weather balloon rises approximately 1,144 meters / 4 = 286 meters each minute.

Hence, the equation that describes the relationship between the altitude of the weather balloon, a, and the elapsed time in minutes, t, is a = 286t + constant (where the constant represents the initial altitude of the weather balloon).

Option c) a = 252t + 118 is the closest equation that meets the criteria.

User Zrajm
by
7.4k points