Final answer:
For triangles EFI and GFH to be similar, the statement 'segment FH over segment FI equals segment HG over segment IE' must be true.
Step-by-step explanation:
In order for triangles EFI and GFH to be similar, the following statement must be true: segment FH over segment FI equals segment HG over segment IE.
This can be illustrated as:
FI = x (let's say)
FH = 2x (since two segment FI equals three segment FH)
HG = 2 (let's say)
IE = 1 (since points E, F, and G are collinear, IE can be represented as 1)
So, segment FH over segment FI (2x/x) equals segment HG over segment IE (2/1), which fulfills the condition for similarity between triangles EFI and GFH.