233k views
4 votes
Given the equation 2(m_DEB) = mBD + mAC, which relationship is true?

A) mZDEB = mBD + mAC
B) mZDEB = mBD - mAC
C) mZDEB = 2mBD + mAC
D) mZDEB = 2(mBD + mAC)

User Jmazin
by
7.6k points

1 Answer

2 votes

Final answer:

Option A (mZDEB = mBD + mAC) is the correct relationship derived from simplifying the given equation 2(m_DEB) = mBD + mAC.

Step-by-step explanation:

The given equation is 2(m_DEB) = mBD + mAC. To find which relationship is true, we need to simplify and interpret the given equation. Since the equation consists of measure of angles and their relationships, we can presume that m_DEB stands for the measure of angle DEB in a geometrical context. Therefore, by simplifying, we can deduce that mZDEB equals to 2 times m_DEB. The equation simplifies to mZDEB = mBD + mAC, which matches option A. Therefore, option A (mZDEB = mBD + mAC) is the correct relationship that is true according to the given equation.

User Stevanicus
by
8.1k points