Final answer:
To simplify the expression, use the laws of exponents and combine like terms in the numerator and denominator.
Step-by-step explanation:
To simplify the expression 27^n * (3)^5 - (3)^(3n-1) * (81) / (9^(2n) * (3^3)), we can use the laws of exponents.
- Start by simplifying the numerator: 27^n * (3)^5 - (3)^(3n-1) * (81)
- Use the laws of exponents to simplify each term: (27^n)*(3^5) = 3^(3n)*3^2^2*3^3^3^3, (3)^(3n-1)*(81) = 3^(3n)*3^3*3^3
- Combine like terms in the numerator: 3^(3n)*3^2^2*3^3^3^3 - 3^(3n)*3^3*3^3
- Simplify the denominator: 9^(2n)*(3^3) = (3^2)^2^2n*(3^3)
- Combine like terms in the denominator: (3^2)^2^2n*(3^3) = 3^(4n)*3^3
- Divide the numerator by the denominator: (3^(3n)*3^2^2*3^3^3^3 - 3^(3n)*3^3*3^3) / (3^(4n)*3^3)
- Use the law of division of exponentials to simplify: (3^(3n)*3^2^2*3^3^3^3 - 3^(3n)*3^3*3^3) / (3^(4n)*3^3) = 3^(3n-22) - 3^(3n-9)