96.4k views
3 votes
"Is there a proportional relationship between Category 1 and Category 2 in the table below? Explain your answer.

Category 1 | 3 | 5
Category 2 | 15 | 20 | 25 | 30

A) Yes, there is a proportional relationship because Category 2 is always three times Category 1.
B) No, there is no proportional relationship because Category 2 does not vary linearly with Category 1.
C) Yes, there is a proportional relationship because Category 1 and Category 2 increase by the same amount.
D) No, there is no proportional relationship because Category 1 is always greater than Category 2."

1 Answer

5 votes

Final answer:

The correct answer is B) No, there is no proportional relationship because Category 2 does not vary linearly with Category 1, as the ratio of the values is not consistent.

Step-by-step explanation:

To determine if there is a proportional relationship between Category 1 and Category 2 in the provided table, we need to check if the ratio of Category 2 to Category 1 is consistent across all pairs of values. A directly proportional relationship implies that as one quantity increases, the other increases at a constant rate, which can be represented by the equation y = kx, where k is the proportionality constant. In this case, if we divide the values in Category 2 by the corresponding values in Category 1, we see that 15/3 = 5, 20/5 = 4, 25 and 30 do not have corresponding values in Category 1 to test. Since the ratio is not consistent (5 and then 4), there is no proportional relationship between Category 1 and Category 2. Therefore, the correct answer would be B) No, there is no proportional relationship because Category 2 does not vary linearly with Category 1.

User Akoprowski
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.