Final answer:
The trigonometric formulas mentioned are Cot A = cos A/sin A, sin (a ± ß) = sin a cos ß ± cos a sin ß, cos (a ± ß) = cos a cos ß ± sin a sin ß, tan (a ± ß) = (tan a ± tan ß) / (1 ∓ tan a tan ß), sin a + sin ß = 2 sin((a + ß)/2) cos((a - ß)/2), and cos a + cos ß = 2 cos((a + ß)/2) cos((a - ß)/2).
Step-by-step explanation:
The trigonometric formulas that you are looking for are as follows:
Cot A = cos A/sin A
sin (a ± ß) = sin a cos ß ± cos a sin ß
cos (a ± ß) = cos a cos ß ± sin a sin ß
tan (a ± ß) = (tan a ± tan ß) / (1 ∓ tan a tan ß)
sin a + sin ß = 2 sin((a + ß)/2) cos((a - ß)/2)
cos a + cos ß = 2 cos((a + ß)/2) cos((a - ß)/2)
These formulas are commonly used in trigonometry to relate the angles and sides of right-angled triangles. They provide useful relationships between the trigonometric functions of different angles. By using these formulas, you can solve various trigonometric equations and problems.
So therefore the trigonometric formulas mentioned are Cot A = cos A/sin A, sin (a ± ß) = sin a cos ß ± cos a sin ß, cos (a ± ß) = cos a cos ß ± sin a sin ß, tan (a ± ß) = (tan a ± tan ß) / (1 ∓ tan a tan ß), sin a + sin ß = 2 sin((a + ß)/2) cos((a - ß)/2), and cos a + cos ß = 2 cos((a + ß)/2) cos((a - ß)/2). These formulas are used to relate the angles and sides of right-angled triangles and can be used to solve various trigonometric problems.