185k views
0 votes
Simplify the expression: (n^3 + 4n^2 - 50n - 59) (n - 6).

1 Answer

3 votes

Final answer:

To simplify the expression (n^3 + 4n^2 - 50n - 59) (n - 6), we can use the distributive property and then combine like terms.

Step-by-step explanation:

To simplify the expression (n^3 + 4n^2 - 50n - 59) (n - 6), we can use the distributive property.

First, distribute n to each term inside the parentheses:

n(n^3 + 4n^2 - 50n - 59) - 6(n^3 + 4n^2 - 50n - 59)

Next, simplify each term:

n^4 + 4n^3 - 50n^2 - 59n - 6n^3 - 24n^2 + 300n + 354

Now, combine like terms:

n^4 - 2n^3 - 74n^2 + 241n + 354

User Sergei Lomakov
by
8.5k points