Final answer:
To simplify the expression (n^3 + 4n^2 - 50n - 59) (n - 6), we can use the distributive property and then combine like terms.
Step-by-step explanation:
To simplify the expression (n^3 + 4n^2 - 50n - 59) (n - 6), we can use the distributive property.
First, distribute n to each term inside the parentheses:
n(n^3 + 4n^2 - 50n - 59) - 6(n^3 + 4n^2 - 50n - 59)
Next, simplify each term:
n^4 + 4n^3 - 50n^2 - 59n - 6n^3 - 24n^2 + 300n + 354
Now, combine like terms:
n^4 - 2n^3 - 74n^2 + 241n + 354