44.2k views
2 votes
Expand the expression (4r+t)^4 using the binomial theorem!

1 Answer

5 votes

Final answer:

To expand the expression (4r+t)^4 using the binomial theorem, we can use the formula (a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-2)a^2b^(n-2) + C(n, n-1)ab^(n-1) + C(n, n)b^n. Applying this formula to (4r+t)^4, where a = 4r and b = t, we get 256r^4 + 256r^3t + 96r^2t^2 + 16rt^3 + t^4.

Step-by-step explanation:

To expand the expression (4r+t)^4 using the binomial theorem, we can use the formula:

(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-2)a^2b^(n-2) + C(n, n-1)ab^(n-1) + C(n, n)b^n

Applying this formula to (4r+t)^4, where a = 4r and b = t, we get:

(4r + t)^4 = C(4, 0)(4r)^4 + C(4, 1)(4r)^3(t) + C(4, 2)(4r)^2(t)^2 + C(4, 3)(4r)(t)^3 + C(4, 4)(t)^4

Simplifying further, we have:

256r^4 + 256r^3t + 96r^2t^2 + 16rt^3 + t^4

User Erik Tjernlund
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories