208k views
17 votes
In the adjoining figure , APB and AQC are equilateral triangles. Prove that PC = BQ. ( Hint :
\triangleAPC =
\triangleAQB, then PC = BQ)

~Thanks in advance ! ツ

In the adjoining figure , APB and AQC are equilateral triangles. Prove that PC = BQ-example-1
User Bzu
by
4.6k points

1 Answer

7 votes

Answer:

See Below.

Explanation:

Statements: Reasons:


\displaystyle 1)\text{ } \Delta APB \text{ and } \Delta AQC \text{ are equilateral triangles} Given


\displaystyle 2) \text{ } m \angle PAB = 60 Definition of equilateral.


3)\text{ } m \angle QAC = 60 Definition of equilateral.


4)\text{ } m\angle PAB = m\angle QAC Substitution


5)\text{ } m\angle PAC=m\angle PAB+m\angle BAC Angle Addition


\displaystyle 6)\text{ } m\angle QAB=m\angle QAC+m\angle BAC Angle Addition


7)\text{ } m\angle QAB=m\angle PAB+m\angle BAC Substitution


\displaystyle 8)\text{ } m\angle PAC=m\angle QAB Substitution


9)\text{ } PA=BA Definition of equilateral


10)\text{ } AC=AQ Definition of equilateral


\displaystyle 11)\text{ } \Delta PAC \cong \Delta BAQ Side-Angle-Side Congruence*


\displaystyle 12)\text{ } PC=BQ CPCTC

* SAS Congruence:

PA = BA

∠PAC = ∠QAB

AC = AQ

User Monalisa
by
5.2k points