31.6k views
5 votes
Which statement about the simplified polynomial is true?

A) It is degree 4 because the leading coefficient is 4
B) It is degree 4 because the largest power of all terms is 4
C) It is degree 5 because the largest sum of exponents is 5
D) It is degree 5 because the greatest coefficient is 5

User Tarick
by
8.3k points

1 Answer

2 votes

Final answer:

Statement B is true regarding the degree of a polynomial, as it is determined by the largest power of the variable present, not by the leading coefficient or sum of exponents.

Step-by-step explanation:

The degree of a polynomial is defined by the largest power of all terms when the polynomial is in its simplified form. The leading coefficient of a polynomial does not determine its degree; therefore, statement A is incorrect. Moreover, the coefficients of the terms do not affect the degree either, making statement D incorrect. Statement B is the correct choice because in a polynomial, the degree is certainly determined by the largest power of the variable present in the polynomial, regardless of the coefficients. Lastly, statement C is not relevant since the sum of exponents does not determine the degree of the polynomial.

When we mention powers such as raising a number to the fourth power, it implies multiplication of that number by itself four times. For example, 4 raised to the 3rd power is 4 x 4 x 4, which is 4³. Similarly, for a polynomial, the term with the highest exponent on the variable indicates the degree of the polynomial.

User Henry Cho
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.