155k views
5 votes
Mai wants to make a scale drawing of her kitchen. Her kitchen is a rectangle with length 6 m and width 2 m. She decides on a scale of 1 to 40.

Mai’s kitchen door is 1.2 m wide. How wide should the door be on the scale drawing? Explain how you know.
Include your answer in your response: The door should be ______ wide on the scale drawing because _________."

1 Answer

2 votes

Final Answer:

The door should be 3.0 cm wide on the scale drawing because the scale is 1 to 40, which means that every meter in real life is represented as 1/40 of a meter on the drawing.

Step-by-step explanation:

To create a scale drawing, we need to apply the scale ratio to the actual dimensions of the objects. Mai has decided on a scale of 1 to 40, which means that for every 1 unit of measurement on the scale drawing, it represents 40 units of the same measurement in real life.

Given that the real width of the kitchen door is 1.2 meters, we need to calculate the width of the door on the scale drawing under the chosen scale of 1:40.

To do this, we multiply the actual door width by the scale ratio:
Scale ratio = 1/40
Door width on scale drawing = Door width in real life * Scale ratio
Door width on scale drawing = 1.2 * 1/40
Door width on scale drawing = 0.03 meters

Since scale drawings are often more practical when their dimensions are given in centimeters, we can convert the door width from meters to centimeters:
0.03 meters = 0.03 * 100 centimeters
0.03 meters = 3.0 centimeters


Therefore, the door should be 3.0 cm wide on the scale drawing because the scale is 1 to 40, which means that every meter in real life is represented as 1/40 of a meter on the drawing, and when converted to centimeters, 1 meter equals 100 centimeters. Hence, 0.03 meters will be represented as 3.0 centimeters on the scale drawing.

User Jazmen
by
7.4k points