The acceleration of the toboggan between:
a) points a and b is 8.33 ft/s^2
b) points b and c is -5 ft/s^2
c) points c and d is 0 ft/s^2
The acceleration of the toboggan can be calculated by finding the slope of the speed-time graph between the given points.
a) The acceleration between points A and B can be determined by calculating the change in velocity over the change in time.
![\text{Acceleration}_(AB) = \frac{\text{Change in Velocity}_(AB)}{\text{Change in Time}_(AB)} \]\\\text{Acceleration}_(AB) = \frac{(35 \, \text{m/s} - 10 \, \text{m/s})}{(3 \, \text{s} - 0 \, \text{s})} \]\\\text{Acceleration}_(AB) = \frac{25 \, \text{m/s}}{3 \, \text{s}} \]\\\text{Acceleration}_(AB) \approx 8.33 \, \text{m/s}^2 \]](https://img.qammunity.org/2022/formulas/mathematics/college/7etaly37hkdr17z4c6ju7rm1f1dq7q58u9.png)
b) The acceleration between points B and C can be calculated similarly:
![\[ \text{Acceleration}_(BC) = \frac{\text{Change in Velocity}_(BC)}{\text{Change in Time}_(BC)} \]\\ \text{Acceleration}_(BC) = \frac{(20 \, \text{m/s} - 35 \, \text{m/s})}{(6 \, \text{s} - 3 \, \text{s})} \]\\\text{Acceleration}_(BC) = \frac{-15 \, \text{m/s}}{3 \, \text{s}} \]\\\text{Acceleration}_(BC) \approx -5 \, \text{m/s}^2 \]](https://img.qammunity.org/2022/formulas/mathematics/college/sjv4j0s8lqkhjmt7cd3ax88b3ry018qkss.png)
c) The acceleration between points C and D is calculated the same way:
![\[ \text{Acceleration}_(CD) = \frac{\text{Change in Velocity}_(CD)}{\text{Change in Time}_(CD)} \]\\\text{Acceleration}_(CD) = \frac{(20 \, \text{m/s} - 20 \, \text{m/s})}{(6 \, \text{s} - 6 \, \text{s})} \]\\ \text{Acceleration}_(CD) = \frac{0 \, \text{m/s}}{0 \, \text{s}} \]](https://img.qammunity.org/2022/formulas/mathematics/college/cqp1notnpjnu6cvj89uxz017b1abfcirnb.png)
Therefore the acceleration of the toboggan between:
a) points a and b is 8.33 ft/s^2
b) points b and c is -5 ft/s^2
c) points c and d is 0 ft/s^2