53.0k views
12 votes
Solve the matrix equation for X:

Solve the matrix equation for X:-example-1
User Wzab
by
5.8k points

1 Answer

8 votes

Multiply on the right by the transpose of the matrix on the left side:


X\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}=\begin{bmatrix}-5&-1&0\\5&-2&5\end{bmatrix}


X\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}^\top=\begin{bmatrix}-5&-1&0\\5&-2&5\end{bmatrix}\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}^\top

The transpose is just the same matrix with the entries reflected along the main diagonal:


\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}^\top=\begin{bmatrix}1&3\\-1&0\\2&1\end{bmatrix}

So


X\begin{bmatrix}1&-1&2\\3&0&1\end{bmatrix}\begin{bmatrix}1&3\\-1&0\\2&1\end{bmatrix}=\begin{bmatrix}-5&-1&0\\5&-2&5\end{bmatrix}\begin{bmatrix}1&3\\-1&0\\2&1\end{bmatrix}


X\begin{bmatrix}6&5\\5&10\end{bmatrix}=\begin{bmatrix}-4&-15\\17&20\end{bmatrix}

Now multiply on the right by the inverse of the matrix on the left side:


X\begin{bmatrix}6&5\\5&10\end{bmatrix}\begin{bmatrix}6&5\\5&10\end{bmatrix}^(-1)=\begin{bmatrix}-4&-15\\17&20\end{bmatrix}\begin{bmatrix}6&5\\5&10\end{bmatrix}^(-1)


X=\begin{bmatrix}-4&-15\\17&20\end{bmatrix}\begin{bmatrix}6&5\\5&10\end{bmatrix}^(-1)

The inverse is


\begin{bmatrix}6&5\\5&10\end{bmatrix}^(-1)=\frac1{60-25}\begin{bmatrix}10&-5\\-5&6\end{bmatrix}=\begin{bmatrix}2/7&-1/7\\-1/7&6/35\end{bmatrix}

So


X=\begin{bmatrix}-4&-15\\17&20\end{bmatrix}\begin{bmatrix}2/7&-1/7\\-1/7&6/35\end{bmatrix}=\boxed{\begin{bmatrix}1&-2\\2&1\end{bmatrix}}

User Pankus
by
5.8k points