The perimeter will increase proportional to the value of x. We can write the perimeter in function of x as:
![\begin{gathered} P=2(W+L) \\ P=2(x+3x) \\ P=2\cdot4x \\ P=8x \end{gathered}](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/kqr5r3k48h67hytsd2g5.png)
Then, if x=8, the perimeter is:
![P=8\cdot8=64\text{ in}](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/h6w9has1sx9reed3p5dk.png)
If we increase x by 2, we will have x=8+2=10, and the perimeter will be:
![P=8\cdot10=80\text{ in}](https://img.qammunity.org/qa-images/2023/formulas/mathematics/college/bv2669u69fhkg6ixjxjz.png)
Answer:
For x=8, the perimeter is P=64.
For x=10, the perimeter is P=80 (it is increased by 8*2=16 units)