177k views
0 votes
If f(x) = 3x^2 - 2x + 4 and g(x) = 5x^2 + 6x - 8, find (f + g)(x).

A. (f + g)(x) = -2x^2 - 8x + 12
B. (f + g)(x) = 8x^2 + 4x - 4
C. (f + g)(x) = 8x^2 + 8x + 12
D. (f + g)(x) = 2x^2 + 8x - 12"

User Rashae
by
8.1k points

1 Answer

4 votes

The composite function (f + g)(x) is (f + g)(x) = 8x^2 + 4x - 4

How to evaluate the composite function

From the question, we have the following parameters that can be used in our computation:

f(x) = 3x^2 - 2x + 4 and g(x) = 5x^2 + 6x - 8,

Where, we have

(f + g)(x) = f(x) + g(x)

Substitute the known values into the equation

(f + g)(x) = (3x^2 - 2x + 4) + (5x^2 + 6x - 8)

Combine like terms:

(f + g)(x) = 8x^2 + 4x - 4

Hence, the composite function (f + g)(x) is (f + g)(x) = 8x^2 + 4x - 4

User Idbentley
by
7.9k points