Final answer:
The spectral_radius function calculates the eigenvalues of a matrix A using numpy.linalg.eig and returns the maximum absolute value among these eigenvalues, representing the matrix's spectral radius.
Step-by-step explanation:
The function spectral_radius needs to be written in such a way that it calculates the eigenvalues of a square matrix using the numpy.linalg.eig function and then determines the eigenvalue with the maximum absolute value, which is known as the spectral radius of the matrix.
Here is a sample Python function to achieve this:
import numpy as np
def spectral_radius(A):
eigenvalues, _ = np.linalg.eig(A)
return np.max(np.abs(eigenvalues))
This function accepts a 2-D numpy array A as input, computes its eigenvalues using numpy.linalg.eig, and then returns the maximum absolute value among those eigenvalues, effectively the spectral radius of the matrix.