Answer:
Given function is,
A) To find values of all local maxima of f.
Consider the derivative of f(x), we get,
we get,
Also, let f'(x) be zero, we get (f'(x)=0),
Simplifing we get,
we get,
To find the local maximum,
if f'(x-c)>0 anf f'(x+c)<0, then the x is local maximum
f f'(x-c)<0 anf f'(x+c)>0, then the x is local minimum
For x=0
Consider x-c as -1 (x-c=-1), we get
Consider x+c as 1, (x+c=1), we get
Since f'(-1)>0 anf f'(1)<0, then the 0 is local maximum.
x value of local maximum = 0
Answer is: x value of local maximum = 0