437,815 views
8 votes
8 votes
f(x) = x^3-9x^2+10(A) List the a values of all local maxima of f.x values of local maximums =(B) List the a values of all local minima of f.x values of local minimums =(C) List the a values of all the inflection points of f. x values of inflection points :

User Keith Smiley
by
2.4k points

1 Answer

29 votes
29 votes

Answer:

Given function is,

A) To find values of all local maxima of f.


f\mleft(x\mright)=x^3-9x^2+10

Consider the derivative of f(x), we get,


f\mleft(x\mright)=x^3-9x^2+10
f^(\prime)\left(x\right)

we get,


f^(\prime)\mleft(x\mright)=3x^2-18x^

Also, let f'(x) be zero, we get (f'(x)=0),


3x^2-18x=0

Simplifing we get,


3x\left(x-6\right)=0

we get,


x=0\text{ or x=6}

To find the local maximum,

if f'(x-c)>0 anf f'(x+c)<0, then the x is local maximum

f f'(x-c)<0 anf f'(x+c)>0, then the x is local minimum

For x=0

Consider x-c as -1 (x-c=-1), we get


f^(\prime)(-1)=3\left(-1\right)^2-18\left(-1\right)


f^(\prime)(-1)=21>0

Consider x+c as 1, (x+c=1), we get


f^(\prime)\mleft(1\mright)=3\left(1\right)^2-18\left(1\right)^
f^(\prime)\mleft(1\mright)=-15<0

Since f'(-1)>0 anf f'(1)<0, then the 0 is local maximum.

x value of local maximum = 0

Answer is: x value of local maximum = 0

User Wasmachien
by
2.9k points