Given:
The geometric sequence is
![4, -12, 36,...](https://img.qammunity.org/2022/formulas/mathematics/college/6o9kbcdl0bkp7jz3xnnwvro05k1w9tcoya.png)
To find:
The sum of first 8 terms of the given geometric sequence.
Solution:
We have,
![4, -12, 36,...](https://img.qammunity.org/2022/formulas/mathematics/college/6o9kbcdl0bkp7jz3xnnwvro05k1w9tcoya.png)
Here, the first term is 4 and the common ratio is
![r=(-12)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/s1ikj0zkbmqnpkt6i6rcyzoom2ryyfpbfu.png)
![r=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/mhsprxs02i4tm9ebrhryv6kzg2gxttrgs6.png)
The sum of first n terms of a geometric sequence is
![S_n=(a(r^n-1))/(r-1)](https://img.qammunity.org/2022/formulas/mathematics/college/abxixxezkjici6vgqrzyjbue14o1mzsj1r.png)
Where, a is the first term and r is the common ratio.
Putting n=8, a=4 and r=-3, we get
![S_8=(4((-3)^8-1))/(-3-1)](https://img.qammunity.org/2022/formulas/mathematics/college/dok1znn7rfu34kpxp3ocvp4auyrtxrduzs.png)
![S_8=(4(6561-1))/(-4)](https://img.qammunity.org/2022/formulas/mathematics/college/gfks6svgm3ljw4mdwd94ado1r08z6mcvvg.png)
![S_8=-6560](https://img.qammunity.org/2022/formulas/mathematics/college/sc2xvm6lvo8q5mgc7ne1rvo9ievd5yh023.png)
Therefore, the sum of first 8 terms is -6560.