Final answer:
The coordinates of point Q' after rotating triangle PQR 90° counterclockwise about the origin are (6, 5).
Step-by-step explanation:
To rotate a point counterclockwise about the origin, we can use the rotation formulas:
- x' = x · cos(θ) - y · sin(θ)
- y' = x · sin(θ) + y · cos(θ)
For point Q(5, -6), when we rotate it 90° counterclockwise, the new coordinates, Q', would be:
- x' = 5 · cos(90°) - (-6) · sin(90°) = 0 - (-6) = 6
- y' = 5 · sin(90°) + (-6) · cos(90°) = 5 + 0 = 5
Hence, the coordinates of Q' are (6, 5).